时间	主题	简介	地点
13 日晚,	Introduction to	This lecture will give a short introduction to data	信息
(周五)	Data Mining and	mining: what is data mining, why data mining is	工程
19:00	Data Processing	important for data analytics, and how to achieve high	学 院
-22:00	Techniques	efficiency. This lecture also presents some data	副
	-	preprocessing techniques which are often used to get	203
		the data cleaned and get ready the data for subsequent	
		management.	
14 日下午	Frequent pattern	This lecture will present definitions for frequent	信 息
(周六)	mining and	itemsets, closed patterns, frequent generators, and	工程
14: 00-	association study	maximal patterns, and describe the algorithms for	学 院
17: 00	(5-6 hours)	mining these patterns and the related association rules.	副
		This is foundation lecture for the whole subject	203
15 日下午	Emerging	This lecture will describe definition and theories	信息
(周日)	patterns and	related to emerging patterns. Emerging patterns are a	工程
14: 00-	statistically	type of contrast patterns useful for descriptive data	学 院
17: 00	important pattern	mining and classification. In this lecture, I also give	副
		introduction to statistically important patterns such as	203
		odd ratio patterns, relative risk patterns, propensity	
		patterns, and how they are related to emerging	
		patterns.	
18 日晚上	Graph mining	I will describe algorithms for mining maximal	信 息
(周三)		bicliques, cliques, k-cores, quasi-bicliques and dense	工 程
19:00		subgraphs. I also give a brief introduction to	学 院
-22:00		biomedical graph mining.	副
			203
19 日晚上	Classification	In this lecture, I will talk about the classical	信 息
(周四)	algorithms	classification methods such as decision trees,	工程
19:00		ensemble learning algorithms, neural networks,	学 院
-22:00		support vector machines, instance-based learning and	副
		eager leaning methods.	203
21 日下午	Clustering and	I will give an introduction to some widely used	信 息
(周六)	biclustering	clustering algorithms. This include k-means,	工程
14:00-	algorithms	hierarchical and divisive clustering methods.	学 院
17:00		Biclustering is another important topic. I will use	副
		example to show the importance of biclustering for	203
		real-life applications.	
22 日下午	Gene expression	I will give an introduction to gene expression data	信息
(周日)	data analysis.	analysis: what is gene expression, how the expression	工程
14:00-		levels of the genes in a genome are measured and	学 院
17:00		acquired, where to get high-quality data sets. In this	副
		lecture, I will also talk about rule discovery from	203
		paired miRNA-mRNA data sets for functional module	
		identification.	

25 日晚上	Graph mining for	I will describe what is a protein binding hotspot, how	信 息	
(周三)	protein binding	to translate this biological problem into a matched	工程	
19:00	hotspot detection	graph mining problem, and where is the algorithm	学 院	
-22:00		complexity. I will show real examples of binding	副	
		hotspots and the importance to detect them.	203	
26 日晚上	Conformational	In this lecture, I will give definitions for	信 息	
(周四)	B-cell epitope	conformational B-cell epitopes. I will introduce	工程	
19:00	prediction	positive-unlabeled learning algorithms for the	学 院	
-22:00	methods	discovery of unknown epitopes related to antigene-	副	
		antibody binding.	203	
Note: Lecture 2 may take 5-6 hours to complete. All the other lectures may take 3 hours each.				